Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
3.
Vaccine ; 41(17): 2769-2772, 2023 04 24.
Article in English | MEDLINE | ID: covidwho-2265424

ABSTRACT

Previous studies have shown that fully vaccinated patients with SARS-CoV-2 Delta variants has shorter viable viral shedding period compared to unvaccinated or partially vaccinated patients. However, data about effects of vaccination against the viable viral shedding period in patients with SARS-CoV-2 Omicron variants were limited. We compared the viable viral shedding period of SARS-CoV-2 omicron variant regard to vaccination status. Saliva samples were obtained daily from patients with SARS-CoV-2 Omicron variant, and genomic assessments and virus culture was performed to those samples. We found no difference in viable viral shedding period between fully vaccinated and not or partially vaccinated, nor between 1st boostered vs non-boostered patients with SARS-CoV-2 Omicron variant.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Virus Shedding , Prospective Studies , COVID-19/prevention & control , Vaccination
4.
J Hosp Infect ; 2022 Nov 29.
Article in English | MEDLINE | ID: covidwho-2265088

ABSTRACT

OBJECTIVES: There have been limited data on the risk of onward transmission from individuals with Omicron variant infections who return to work after a 5-day isolation. We evaluated the risk of transmission from healthcare workers (HCWs) with Omicron variant who returned to work after a 5-day isolation and the viable virus shedding kinetics. METHODS: This investigation was performed in a tertiary care hospital, Seoul, South Korea. In a secondary transmission study, we retrospectively reviewed the data of HCWs confirmed as COVID-19 from March 14 to April 3, 2022 in units with 5 or more COVID-19-infected HCWs per week. In the viral shedding kinetics study, HCWs with Omicron variant infection who agreed with daily saliva sampling were enrolled between February and March, 2022. RESULTS: Of the 248 HCWs who were diagnosed with COVID-19 within 5 days of the return of an infected HCW, 18 (7%) had contact with the returned HCW within 1 to 5 days after their return. Of these, 9 (4%) had an epidemiologic link other than with the returning HCW, and 9 (4%) had contact with the returning HCW, without any other epidemiologic link. In the study of the kinetics of virus shedding (n=32), the median time from symptom onset to negative conversion of viable virus was 4 days (95% CI, 3 to 5 days). CONCLUSIONS: Our data suggest that the residual risk of virus transmission after 5 days of isolation following diagnosis or symptom onset is low.

5.
J Med Virol ; 2022 Dec 02.
Article in English | MEDLINE | ID: covidwho-2231640

ABSTRACT

BACKGROUNDS: There are limited data comparing the transmission rates and kinetics of viable virus shedding of the Omicron variant to those of the Delta variant. We compared these rates in hospitalized patients infected with Delta and Omicron variants. METHODS: We prospectively enrolled adult patients with COVID-19 admitted to a tertiary care hospital in South Korea between September 2021 and May 2022. Secondary attack rates were calculated by epidemiologic investigation, and daily saliva samples were collected to evaluate viral shedding kinetics. Genomic and subgenomic SARS-CoV-2 RNA was measured by PCR, and virus culture was performed from daily saliva samples. RESULTS: A total of 88 patients with COVID-19 who agreed to daily sampling and were interviewed, were included. Of the 88 patients, 48 (59%) were infected with Delta, and 34 (41%) with Omicron; a further five patients gave undetectable or inconclusive RNA PCR results and one was suspected of being co-infected with both variants. Omicron group had a higher secondary attack rate (31% [38/124]) versus 7% [34/456], p<0.001). Survival analysis revealed that shorter viable virus shedding period was observed in Omicron variant compared with Delta variant (median 4 days, IQR [1 -7], vs. 8.5 days, IQR [5 - 12 days], p<0.001). Multivariable analysis revealed that moderate-to-critical disease severity (HR 1.96), and immunocompromised status (HR 2.17) were independent predictors of prolonged viral shedding, whereas completion of initial vaccine series or 1st booster-vaccinated status (HR 0.49), and Omicron infection (HR 0.44) were independently associated with shorter viable virus shedding. CONCLUSION: Patients with Omicron infections had higher transmission rates but shorter periods of transmissible virus shedding than those with Delta infections. This article is protected by copyright. All rights reserved.

8.
Clin Exp Med ; 2023 Jan 06.
Article in English | MEDLINE | ID: covidwho-2174422

ABSTRACT

There have been few studies comparing the clinical characteristics and outcomes of SARS-CoV-2 pneumonia in individuals with and without moderately to severely immunocompromised conditions. We reviewed adult patients with SARS-CoV-2 infection who had radiologic evidence of pneumonia at a tertiary hospital in Seoul, South Korea, from February 2020 to April 2022. Moderately to severely immunocompromised status was defined as medical conditions or treatments that resulted in increased risk of severe COVID-19 and weakened immune response to COVID-19 vaccine as recommended by Centers for Disease Control and Prevention. The time to pneumonia development was defined as the time from symptom onset to the time when radiologic evidence of pneumonia was obtained. Viral clearance was defined as a Ct value > 30. COVID-19-related death was defined as 90-day death following imaging-confirmed pneumonia without any other plausible cause of death. A total of 467 patients with SARS-CoV-2 pneumonia were analyzed. Of these, 102 (22%) were moderately to severely immunocompromised. The median (IQR) time to pneumonia development was significantly longer in moderately to severely immunocompromised patients (9.5 [6-14] days) than the comparator (6 [3-8] days), p < 0.001), as was the median time to viral clearance (21 versus 12 days, p < 0.001). Moderately to severely immunocompromised status (aOR, 18.39; 95% CI, 5.80-58.30; p < 0.001) was independently associated with COVID-19-related death. Patients with moderately to severely immunocompromised conditions are likely to experience a more protracted course of SARS-CoV-2 pneumonia and a worse outcome than those without these conditions.

10.
J Clin Virol ; 157: 105319, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2105315

ABSTRACT

BACKGROUND: The Centers for Disease Control and Prevention (CDC) recommends 5-10 days of isolation for patients with COVID-19, depending on symptom duration and severity. However, in clinical practice, an individualized approach is required. We thus developed a clinical scoring system to predict viable viral shedding. METHODS: We prospectively enrolled adult patients with SARS-CoV-2 infection admitted to a hospital or community isolation facility between February 2020 and January 2022. Daily dense respiratory samples were obtained, and genomic RNA viral load assessment and viral culture were performed. Clinical predictors of negative viral culture results were identified using survival analysis and multivariable analysis. RESULTS: Among 612 samples from 121 patients including 11 immunocompromised patients (5 organ transplant recipients, 5 with hematologic malignancy, and 1 receiving immunosuppressive agents) with varying severity, 154 (25%) revealed positive viral culture results. Multivariable analysis identified symptom onset day, viral copy number, disease severity, organ transplant recipient, and vaccination status as independent predictors of culture-negative rate. We developed a 4-factor predictive model based on viral copy number (-3 to 3 points), disease severity (1 point for moderate to critical disease), organ transplant recipient (2 points), and vaccination status (-2 points for fully vaccinated). Predicted culture-negative rates were calculated through the symptom onset day and the score of the day the sample was collected. CONCLUSIONS: Our clinical scoring system can provide the objective probability of a culture-negative state in a patient with COVID-19 and is potentially useful for implementing personalized de-isolation policies beyond the simple symptom-based isolation strategy.


Subject(s)
COVID-19 , United States , Adult , Humans , Virus Shedding , SARS-CoV-2 , COVID-19 Testing , Viral Load
11.
Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology ; 2022.
Article in English | EuropePMC | ID: covidwho-2045842

ABSTRACT

Background : The Centers for Disease Control and Prevention (CDC) recommends 5–10 days of isolation for patients with COVID-19, depending on symptom duration and severity. However, in clinical practice, an individualized approach is required. We thus developed a clinical scoring system to predict viable viral shedding. Methods : We prospectively enrolled adult patients with SARS-CoV-2 infection admitted to a hospital or community isolation facility between February 2020 and January 2022. Daily dense respiratory samples were obtained, and genomic RNA viral load assessment and viral culture were performed. Clinical predictors of negative viral culture results were identified using survival analysis and multivariable analysis. Results : Among 612 samples from 121 patients including 11 immunocompromised patients (5 organ transplant recipients, 5 with hematologic malignancy, and 1 receiving immunosuppressive agents) with varying severity, 154 (25%) revealed positive viral culture results. Multivariable analysis identified symptom onset day, viral copy number, disease severity, organ transplant recipient, and vaccination status as independent predictors of culture-negative rate. We developed a 4-factor predictive model based on viral copy number (-3 to 3 points), disease severity (1 point for moderate to critical disease), organ transplant recipient (2 points), and vaccination status (-2 points for fully vaccinated). Predicted culture-negative rates were calculated through the symptom onset day and the score of the day the sample was collected. Conclusions : Our clinical scoring system can provide the objective probability of a culture-negative state in a patient with COVID-19 and is potentially useful for implementing personalized de-isolation policies beyond the simple symptom-based isolation strategy.

SELECTION OF CITATIONS
SEARCH DETAIL